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Abstract. In this paper we analyze composite non-adaptive algorithms for optimization of one-
dimensional Brownian motion. We show that a composite deterministic algorithm has a better aver-
age performance than the best random one.
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1. Introduction

This paper is a study of the average performance of non-adaptive (also called
passive) algorithms for approximating the global minimum of one-dimensional
real-valued functions defined on the unit interval. More specifically, we study the
average error of composite algorithms as compared to non-composite algorithms.
Our criterion for error is the difference between the observed minimum value and
the actual global minimum. We compare algorithms based on average performance
on a random objective function. For our comparison we use the Wiener measure on
the continuous functions, so the objective function is taken to be a sample function
of a Brownian motion (or Wiener) process. Since this process is the intersection of
the classes of Gaussian processes, Markov processes, and martingales, it is both of
modeling interest and there is also a large set of tools available for its analysis.

We consider only non-adaptive algorithms; that is, algorithms that make no
use of prior information in choosing the next observation site. A composite non-
adaptive algorithm is one that maintains its form as the number of observations
increases; see [15]. If we denote the set of observations made by an algorithm up
to time n by Tn = {t1, t2, . . . , tn}, then we will call an algorithm composite if
Tn ⊂ Tn+1. For example, if the observation points{ti} are chosen independently
according to a fixed probability distribution, then the resulting algorithm is com-
posite (the setTn is random, and for a given sample pointω, Tn(ω) ⊂ Tn+1(ω)).
A consequence of compositeness is that there is no need to determine in advance
how many observations are to be taken in order to construct the observation set.
? The second author was supported in part by NSF Grant DMI-9500173.
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In contrast, non-composite algorithms do not adapt gracefully as the number of
observations changes. An example is the “uniform grid” non-composite algorithm
that takes equally spaced observations; if a total ofn observations are to be made,
they are placed at 1/n, 2/n, . . . , 1. However, if the number of observations is
increased ton+ 1, there is no way to add an observation point so as to maintain a
uniform grid.

In the case of Brownian motion, it is shown in [4] that if observations form
a deterministic equi-spaced grid, then the error is about 82% as large as if the
points are chosen at random uniformly over the unit interval. However, if new
observations are to be added the uniformity of the deterministic grid will not hold
at all times. One might expect, for example, that if the grid is such that 2k points
are equi-spaced to the left of 1/2 and kpoints are equi-spaced to the right of 1/2,
then choosing 3k points at random uniformly over the interval might give a smaller
error on average. This question is the motivation for the present paper.

Al-Mharmah and Calvin [1] studied randomized non-adaptive algorithms, and
found that the optimal distribution from which to draw the independent observa-
tions is Beta(2/3,2/3). Calvin [5] showed that then quantiles of the Beta(2/3,2/3)
distribution are optimal within the class of deterministic non-adaptive algorithms;
this algorithm has the disadvantage of being non-composite. The average nor-
malized error for the deterministic version is about 82% of that for the random
algorithm (with the number of observationsn predetermined). The advantage of
the random algorithms is compositeness, and the disadvantage is the random gaps.
The largest gap in a set of uniformly distributed points is of order log(n)/n, and
because of length-biased sampling, the large gaps are more likely to contain the
minimizer. Our main result is to show that a composite deterministic algorithm has
a better average performance than the optimal random algorithm. Since the studies
mentioned above were concerned with the limiting distribution of the normalized
error, by “optimal” we mean minimal limiting normalized mean error. This implies
that we do not distinguish between the performance of algorithms that differ by
mean error of ordero(n−1/2).

Our study relies on a “splitting” theorem for Brownian motion (Theorem 3.2
below), which splits the Brownian path at the global minimum into two condi-
tionally independent path fragments. While this result generalizes to other one-
dimensional diffusion processes, there is no analog for multi-dimensional random
fields. Therefore, the techniques of this paper do not allow us to compare composite
and non-composite algorithms for multi-dimensional optimization.

In the next section we introduce the problem and the notation. In Section 3 we
establish some background results concerning the distribution of the minimizer and
path decompositions at the global minimum for Brownian motion. In Section 4 we
describe the algorithm and analyze the limiting error. The main proof is presented
in an appendix.
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2. Notation and terminology

Suppose that the class of functions to be optimized isC[0,1], the continuous func-
tions defined on the unit interval. ForX ∈ C[0,1], letM = min{X(t); t ∈ [0,1]}
denote its global minimum, and letT = inf{t 6 1 : X(t) = M} be the (first)
location where the minimum is attained. Throughout this paper we will assume
that we are allowed to observe (without error) the functionX at the sequence of
observation pointst1, t2, . . . in [0,1].

The Wiener measure will be taken as the probability distribution; i.e.,X is
taken to be a sample path of a Brownian motion process. The Wiener measure
is characterized as follows. For eacht ∈ [0,1], X(t) has the normal distribution
with mean 0 and variancet , and for anyk > 1 and

06 t0 6 t1 6 . . . 6 tk 6 1, (1)

the incrementsX(t1)−X(t0),X(t2)−X(t1), . . . ,X(tk)−X(tk−1) are independent.
It follows that the random variablesX(ti)− X(ti−1) are normally distributed with
mean 0 and varianceti − ti−1 (see [3]).

As long as the maximum distance between observations goes to 0 asn → ∞,
the error

1n = min
16i6n

X(ti)−M

converges to 0 for any sample path. Ritter [10] established that the best non-
adaptive algorithm has error of ordern−1/2 as n → ∞. This suggests that in
our comparison between the performance of both the deterministic composite al-
gorithm and the best random one we examine the behavior of the sequence

E(
√
n1n) = E

√
n

(
min

16i6n
X(ti)−M

)
, (2)

where the expectation is with respect to the joint distribution of the observations
andX in the case of a randomized algorithm.

In order to obtain a detailed understanding of the behavior of the Brownian
path near the global minimum, we need to introduce processes and random vari-
ables associated with the 3-dimensional Bessel process into our analysis. The 3-
dimensional Bessel process is the diffusion process that is identical in law to the
modulus of a 3-dimensional Brownian motion. A 3-dimensional Bessel bridge
from (0,0) to (t, y) is a 3-dimensional Bessel process starting from 0 at time 0
“conditioned to take the valuey at time t”; see [11]. Define a “two-sided Bessel
process”R by

R(t) =
{
R1(t) if t > 0,
R2(−t) if t < 0,

(3)
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whereR1 andR2 are independent 3-dimensional Bessel processes. We need to
introduce a random variable that will appear in the limit results that we will derive.
Let

W = min
i=0,±1,±2,...

R(i + U), (4)

whereU is a uniformly distributed random variable on the unit interval, independ-
ent ofR. This random variable has expectationE(W) = −ζ(1/2)/√2π (see [2]),
whereζ is Riemann’s zeta function.

Finally, we will use⇒ to denote convergence in distribution; i.e.,Xn ⇒ X

means thatEf (Xn)→ Ef (X) for all bounded continuous functionsf .

3. Probabilities and path decomposition

In this section we describe how the Brownian motion path can be “split” at the
global minimum, yielding two independent Markov processes, one to either side.
This path decomposition completely describes the behavior of the Brownian mo-
tion path near the global minimum, and is basic to our analysis of algorithms in
the next section. (For an example of how the decomposition can be used to analyze
adaptive algorithms, see [6].)

Letf (t; x, y) be the density of the first hitting time fromx to y. These densities
are given by (see [12])

f (t; x, y) = | y − x |√
2πt3

exp

(
− (y − x)

2

2t

)
. (5)

We will have use for the joint distribution ofM,T , andX(1), which was derived by
Shepp (see [13]). Theorem 3.1, which is proved in [9], expresses the joint density
as the product of first hitting time densities.

THEOREM 3.1. For x > y,0 > y, and06 t 6 1,

P(M ∈ dy,X(1) ∈ dx, T ∈ dt) = f (t;0, y)f (1− t; x, y) dy dx dt. (6)

The marginal densityξ of T is the “arc-sine” density (see Feller [7]);

P(T ∈ dt)/dt = ξ(t) = 1

π
√
t (1− t) , 0< t < 1. (7)

The following result is a special case of a general result of Fitzsimmons ([8])
that decomposes the path of a diffusion process at the minimum (this result gener-
alizes an earlier result of Williams [14]).

THEOREM 3.2. Given (M = y, T = t, X(1) = x) (0 < t < 1, y < x), the
process{X(t+u)−y}06u61−t is a 3-dimensional Bessel bridge from0 at time0 to
x − y at time1− t , independent of{X(t − u)− y}06u6t , which is a 3-dimensional
Bessel bridge from0 at time0 to−y at timet .
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The following result, which is proved in [2], will be used to determine the limits
of certain subsequences ofE(

√
n1n) as shown in the next section. Roughly, it says

that if we place the origin of our coordinate system at the global minimum, then
rescale time by a factor ofn and space by a factor of

√
n, then the resulting process

will, in the limit, resemble the two-sided Bessel processR defined by (3).

THEOREM 3.3. Let A > 0 be fixed. Then conditionally on(M = y, T =
t, X(1) = x),(√

n (X(t + u/n)− y) ,√n (X(t − u/n)− y) ,06 u 6 A)
⇒ ((R1(u), R2(u)) ;06 u 6 A)

in C[0, A] × C[0, A] asn→∞.
Also, setting

δAn = min
|s−T |>A/n

X(s)−M, (8)

we have that for anya > 0,

lim
A→∞ lim sup

n→∞
P
(√
nδAn 6 a

) = 0. (9)

4. Algorithm and error analysis

To motivate the composite algorithm that is the main object of our study, we will
first discuss a similar but simpler one. Consider the algorithm that chooses the
following sequence of observation points (label the points asd0, d1, d2, . . . ):

1,
1

2
,

1

4
,

3

4
,

1

8
,

3

8
,

5

8
,

7

8
,

1

16
, . . . . (10)

In general,

dn = 2
(
n− 2blg(n)c

)+ 1

2blg(n)c+1
, n > 1,

wherelg denotes logarithm to the base 2. (Recall thatX(0) = 0, so that in effect
we start off with the observation at 0.) If the number of observations is a power
of 2, then the points form an equi-spaced grid, which one would expect to be
efficient. Otherwise, the grid has some intervals twice as wide as others, which
is clearly inefficient. The algorithm that we will describe uses the images of the
above sequence{di} under a continuous transformation of the unit interval. This
corresponds to making the points the quantiles of a beta distribution, which is in a
sense optimal, as pointed out in the Introduction.
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LetH be the cumulative density of the Beta(2/3,2/3) distribution,

H(t) = I (2/3,2/3, t) = B(2/3,2/3)−1
∫ t

s=0

ds

[s(1− s)]1/3 (11)

for 0 6 t 6 1, whereB denotes the Beta andI the incomplete Beta func-
tion. Leth(t) = H ′(t) = (

B(2/3,2/3)[t (1− t)]1/3)−1
denote the corresponding

probability density function, and define an algorithm byt0 = 1= H−1(1), and

tn = H−1 (dn) , n > 1. (12)

Thus thetn’s are the images underH−1 of the grid points defined by (10). We
will show that this algorithm dominates the best random composite algorithm in
the limit. That is, the sequence defined by (12) performs better than choosing the
points independently from the Beta(2/3,2/3) distribution.

The sequenceE(
√
n1n) does not converge, and our aim is to determine its

least upper bound and greatest lower bound (Theorem 4.2). In a first step, we will
determine the limits of certain subsequences ofE(

√
n1n) as shown in Theorem

4.1.

THEOREM 4.1. Let {nk : k > 1} be an increasing sequence of integers such that

2k 6 nk < 2k+1, k > 1,

and

tnk → τ ∈ (0,1)
ask→∞. Let

β(T ) =
{

1 if T > τ ,
2 if T < τ .

Then√
2kβ(T )h(T )1nk ⇒ W (13)

ask→∞, whereW is defined by (4).
Furthermore,

E
(√
nk1nk

)→ (14)√
1+H(τ)E(W)B(2/3,2/3)

3/2

π

(
1− (1− 2−1/2

)
H(τ)

)
.

The proof of Theorem 4.1 is deferred to the appendix.
To picture the content of Theorem 4.1, it may be helpful to consider the simpler

result obtained by replacingH by the identity function (in the Theorem, replace
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H(τ) by τ andh(T ) by 1). The observation sequence is thenti = di ; i.e., choose
the next point by bisecting the largest subinterval, choosing the leftmost subinterval
in case of ties. Suppose we look at the grid at those time pointsnk = 2k + 2k−1;
we have a uniform grid of mesh 2−k, and in addition have bisected all the intervals
to the left of 1/2. Basically, the grid to the right of 1/2 is of mesh 2−k and to the
left it is 2−k−1, andtnk → τ = 1/2. Then the theorem says that ifT < 1/2, the
asymptotic error is as if the observations formed a uniform grid of mesh 2−k−1,
while if T > 1/2, then the asymptotic error is as if the observations formed a
uniform grid of mesh 2−k . The effect of nonlinearH is captured by theh term in
(13).

We are now ready for our main result.

THEOREM 4.2. Under the algorithm described in this section,

lim sup
n→∞

E
(√
n1n

)
(15)

= E(W)B(2/3,2/3)
3/2

π

4
√

2− 2

3
√

2

√
2
√

2− 1

3
√

2− 3
≈ 0.5705,

and

lim inf
n→∞ E

(√
n1n

) = E(W)B(2/3,2/3)3/2
π

≈ 0.5457. (16)

Proof.Denote the function ofτ given by the limit in (14) by9(τ); i.e.,

9(τ) = √1+H(τ)E(W)B(2/3,2/3)
3/2

π

(
1− (1− 2−1/2)H(τ)) . (17)

SinceH is differentiable and strictly increasing, we can find the valueτ̂ maximiz-
ing9, which is

τ̂ = H−1

(√
2

3

)
,

with corresponding value given by the right hand side of (15). Therefore, since we
know how to construct a subsequence with this limit, we know that

lim sup
n→∞

E
(√
n1n

)
> 9(τ̂ ). (18)

To show that this is in fact the lim sup, suppose that there is a subsequencenk such
that

E(
√
nk1nk )→ γ > 9(τ̂ ).
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Consider the sequence{tnk }. There is a subsequencen′k such thattn′k → τ , say. By
(14), which holds even if then′k are not all in the interval[2k,2k+1],

E

(√
n′k1n′k

)
→ 9(τ) 6 9(τ̂ ),

contradicting the assumption that

E(
√
nk1nk )→ γ > 9(τ̂ ),

and (15) is proved.

The lim inf occurs whenH(τ) ∈ {0,1} (i.e.,τ ∈ {0,1}), which gives (16).

As mentioned in the Introduction, the best performance among algorithms that
choose observations independently from a fixed probability distribution is obtained
from the Beta(2/3,2/3) distribution. The corresponding limiting normalized mean
error for this random algorithm is

E
(√
n1n

)→ 1

π
√

2
B(2/3,2/3)3/2 ≈ 0.6623; (19)

see [1]. Comparing this result with Theorem 4.2 shows that the deterministic com-
posite algorithm has a better limiting performance in the sense that the lim sup
of the normalized mean error is≈ 0.5705, considerably less than the limit in
(19). In this case, the benefit of deterministic gaps outweighs the penalty of grid
non-uniformity whenn is not a power of 2.

Appendix

PROOF OF THEOREM4.1

Let Pt,y,x be a regular version of the conditional probabilityP(· | T = t,M =
y,X(1) = x), and let

1A
nk
= min{X(tni )−M;1 6 ni 6 nk, | tni − T |6 A/nk}.

Then,

P
(√

2kβ(T )h(T )1A
nk
6 z

)
=
∫
t,y,x

Pt,y,x

(√
2kβ(t)h(t) 1A

nk
6 z

)
P(T ∈ dt,M ∈ dy,X(1) ∈ dx),

=
∫
t,y,x

Pt,y,x

(√
2kβ(t)h(t) min

|tni−t |6A/nk
(X(tni )− y) 6 z

)
· P(T ∈ dt,M ∈ dy,X(1) ∈ dx).
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To simplify notation, it is convenient to relabel the observation sites according to
their location with respect toT . Let t ′1 be the first observation to the right ofT ,
t ′2 the next observation to the right oft ′1, and so on. Similarly, Lett ′−1 be the first
observation to the left ofT , t ′−2 the next observation to the left oft ′−1, and so on.
The t ′i depend onn, but to keep the notation simple we do not use the additional
superscript. Considering the observation sites to the left and to the right oft , the
integrand

Pt,y,x

(√
2kβ(t)h(t) min

|tni−t |6A/nk
(X(tni )− y) 6 z

)
becomes

Pt,y,x

(
min

|t ′j−t |6A/nk

√
2kβ(t)h(t)

·
(
X

(
t + 2kβ(t)h(t)(t ′1 − t)+

∑
j ϕj (t)

2kβ(t)h(t)

)
− y

)
6 z

)
,

where

ϕj (t) = 2kβ(t)h(t)[t ′j+1 − t ′j ]. (20)

Since| t ′j−t |6 A/nk, ϕj (t)→ 1 asnk →∞ for each suchj . This is because near
t , thet ′j are the images underH−1 of points separated by[2kβ(t)]−1. Therefore,

t ′j+1 − t ′j ≈
1

2kβ(t)

d

ds
H−1(s)|s=H(t)

= 1

2kβ(t)

1

h(t)
.

The process√
2kβ(t)h(t)

(
X

(
t + u

2kβ(t)h(t)

)
− y

)
−A6u6A

(21)

converges in distribution to{R(u) : −A 6 u 6 A} by Theorem 3.3 and the Bessel
scaling property (ifX is a 3-dimensional Bessel process, then so is

√
cX(·/c) for

anyc > 0). Also, 2kβ(T )h(T )(t ′1− T )⇒ U , whereU is uniform(0,1), since∫
t,y,x

Pt,y,x
(
2kβ(t)h(t)(t ′1 − t) 6 z

)
P(T ∈ dt,M ∈ dy,X(1) ∈ dx)

=
n∑
i=1

∫ t ′′i

t=t ′′i −z/2kβ(t)h(t)
ξ(t) dt → z,
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where the{t ′′i } are the{ti} relabeled in increasing order. The last limit follows from
the fact that fort ′′i−1 < t < t

′′
i ,

2kβ(t)h(t)[t ′′i − t ′′i−1] → 1.

Therefore,√
2kβ(T )h(T )1A

nk
⇒ WA, (22)

where

WA = min
i=0,±1,±2,...
|i+U |6A

R(i + U). (23)

So, by the second part of Theorem 3.3,

| P
(√

2kβ(T )h(T )1A
nk
6 z

)
− P

(√
2kβ(T )h(T )1nk 6 z

)
|

6 P
(√
nkδ

A
nk
6 z

)
converges to 0 asnk and thenA→∞. ClearlyWA → W asA ↑ ∞. Combining
these facts with (22), we have

| P
(√

2kβ(T )h(T )1nk 6 z
)
− P (W 6 z) |

6| P
(√

2kβ(T )h(T )1nk 6 z
)
− P

(√
2kβ(T )h(T )1A

nk
6 z

)
|

+ | P
(√

2kβ(T )h(T )1A
nk
6 z

)
− P (WA 6 z

) |
+ | P (WA 6 z

)− P (W 6 z) | .
Since all three terms on the right hand side of the inequality converge to 0, the first
part of the theorem is proved.

The above steps actually show that(√
β(T )h(T ),

√
2kβ(T )h(T )1nk

)
⇒
(√
β(T )h(T ), W

)
, (24)

where the limit random variables are independent. Therefore, by the continuous
mapping theorem (see [3]),√

2kβ(T )h(T )1nk√
β(T )h(T )

= 2k/21nk ⇒
W√

β(T )h(T )
, (25)

whereW and
√
β(T )h(T ) are independent. It can be shown (see [2] for a similar

calculation) that{2k/21nk : nk > 1} is a uniformly integrable family of random
variables. Therefore, we can conclude that

E
(
2k/21nk

) = (2k

nk

)1/2

E
(√
nk1nk

)→ E(W)E

(
1√

β(T )h(T )

)
(26)
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ask→∞. Sincetnk → τ andH is continuous,H(tnk )→ H(τ), or, by (12),

H(tnk ) =
2(nk − 2k)+ 1

2k+1
= nk

2k
− 1+ 2−k−1→ H(τ),

which implies that

nk

2k
→ 1+H(τ)

ask→∞. Combining this with (26), we conclude that

E
(√
nk1nk

)→ √
1+H(τ)E(W)E

(
1√

β(T )h(T )

)
. (27)

Finally, we evaluate the last expectation appearing in (27):

E

(
1√

β(T )h(T )

)
=
∫ τ

t=0

ξ(t)√
2h(t)

dt +
∫ 1

t=τ
ξ(t)√
h(t)

dt

=
√
B(2/3,2/3)

π

(
1√
2

∫ τ

t=0
[t (1− t)]−1/3dt +

∫ 1

t=τ
[t (1− t)]−1/3dt

)
= B(2/3,2/3)

3/2

π

(
1√
2
I (2/3,2/3, τ ) + I (2/3,2/3,1) − I (2/3,2/3, τ )

)
= B(2/3,2/3)

3/2

π

(
1− (1− 2−1/2) I (2/3,2/3, τ ))

= B(2/3,2/3)
3/2

π

(
1− (1− 2−1/2

)
H(τ)

)
.

We can therefore rewrite (27) as

E
(√
nk1nk

)→ √
1+H(τ)E(W)B(2/3,2/3)

3/2

π

(
1− (1− 2−1/2

)
H(τ)

)
,

which is (14).
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